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A method is presented for the efficient computation of the representation 
matrices of the unitary group, U(n) in the Gelfand Tsetlin basis (correspond- 
ing to the usual spin-symmetry adapted basis for an N electron CI). The present 
scheme is conceptually and computationally attractive in that it is formulated 
directly in terms of Weyl tableaux and also that it permits simultaneous basis 
vector generation and matrix element evaluation. In addition the basis vectors 
are ordered so that subsequent restriction to the three dimensional rotation 
group is facilitated. An illustrative example is also presented. 
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1. Introduction 

In the traditional approach to the method of configuration interaction (CI) the 
central theoretical and practical problems are associated with the efficient genera- 
tion of the symbolic form of the one- and two particle density matrices (so called 
symbolic matrix elements). However, when the Hamiltonian is written in "second 
quantized form" it becomes a sum of linear and bilinear forms in the generators 
of the unitary group U(n), where n is the member of single particle basis states 
(i.e. orbitals). Thus the problem of the computation of symbolic matrix elements 
reduces to one of evaluating matrix elements of the generators of U(n) in the 
N-electron CI basis. The relationship between the unitary group method and 
traditional methods are reviewed in Paldus' paper [1]. We wish to emphasise, 
however, that the unitary group approach offers definite advantages, since once 
the linear (one-electron) part of the Hamiltonian is computed, the bilinear (two- 

* Taken in part from a thesis submitted to the University of London in partial fulfilment of the require- 
ments for the degree of PhD, 
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electron) part may be computed by matrix multiplication (with highly structured 
very sparse matrices). 

Paldus' approach [1-3] to the problem of the construction of the generators of U(n) 
is essentially a simplification of the method of Gelfand and Tsetlin [4]. This 
simplification is possible because of the unnecessary generality of the Gelfand 
method when applied to electronic systems, and leads to enormous simplification 
of the generator matrix element formulae. Harter [5, 6] has also outlined a scheme, 
in which the generator matrix elements are calculated by a "jawbone" formula. 
His system has the conceptual advantage that it is easily interpreted in terms of the 
intuitively appealing Weyl tableaux but the disadvantage that the "jawbone" 
formulae are not suitable for automatic computation. However, Harter generates 
the basis vectors in the same way as Paldus using branching rules, so that Gelfand 
tableaux are generated and then converted to Weyl tableaux. 

2. Basis Vectors for Irreducible Representations of U(n) 

In the Gelfand-Tsetlin approach the basis vectors are obtained by a branching 
pattern in which all lexical tableaux are obtained from the one of the highest 
weight. The first row of the highest weight tableau (or any tableau obtained from it 
in the branching pattern) denotes the box structure of the Weyl tableau 

m,= [ml,, m2. , . . . ,  m,,] (1) 

where mk, gives the number of boxes in the kth row of the usual Young diagram 
for S u . Obviously, one has the relation 

Z rnk, = N (2) 
k 

The basis vectors for U(n) are now constructed by writing down all possible 
Gelfand tableaux 

Frlln m2n 

ml,n-1 

]m) = (3) 

. . . . . . . . . . . . . .  m nn 

m 2 , n -  1 mn-l,n-1 

r o l l  

where one has the "betweenness condition" 

mi,j+ 1 ~mij>~mi+ 1, j+ 1 (4) 

These conditions are simply restrictions on the branching diagrams for the sub- 
group chain 

U(n)~ U(n- 1).. .  U(1) 

Each tableau which obeys these restrictions is referred to as a lexical tableau and 
if the restriction is applied leaving highest members in the highest rows first the 
tableaux are said to be in lexical order. 
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The Gelfand tableaux obtained in this manner are in one-to-one correspondence 
with Weyl tableaux. The number of boxes in the tableau is deduced from the 
number of non-zero entries in the top row of the Gelfand tableau. The numbers 
in the rows of the Weyl tableau are then given by the columns of the corresponding 
Gelfand tableau. In the kth row of the Weyl tableau the first mkk entries correspond 
to the number of the row in which mkk occurs. The following mk,k+l-mkk entries 
correspond to the row number in which mk,k+ z occurs. 

With a view to later discussion it should be pointed out that the number i contained 
in a Weyl tableau is related to row i of the corresponding Gelfand tableau. Thus a 
change in the i'th row of a Gelfand tableau corresponds to simply to the addition 
or removal of the number i from the Weyl tableau. In particular, we shall be 
concerned with the case when only the i'th row of the Gelfand tableau is allowed to 
change so that a given element in the row is increased from 0 to 1 or 1 to 2. This 
change implies that the number i+ 1 in the Weyl tableau is replaced by i in exactly 
the same position. 

3. Matrix Elements of the Generators of U(n) 

The infinitesimal generators of U(n), Epq obey the commutation relation (7) 

[Evq, E,.s] = @.Eps- (SvsE,. q (5a) 

which reduces to 

[Evr, EJ=Ep~ (5b) 

in the special case that q-- r. The generators are divided into three types according 
to whether p =  q, p > q  or p<  q corresponding to weight generators lowering 
generators and raising generators respectively. Since the Epq are generators of 
U(n) one also has the Hermitian conjugate condition 

e .=eq, (5c  

Since the matrix representations of the generators in the Gelfand basis have only 
real entries Eq. (5c) implies that the matrix representation of the operator Epq 
is simply the transpose of that for Eqp. Also, because of the relationship (5b) it will 
be possible to calculate all the raising generators from a set of elementary raising 
generators E u where j =  i+ 1. Thus, we are concerned only with the computation 
of the generators E u (j = i + 1). The relationship of the generator matrix representa- 
tions to the second quantized form of the Hamiltonian is outlined by Paldus [3]. 
The significant point to be made with a view to practical computation is that the 
Hamiltonian is a bilinear form in the generators and hence the eventual computa- 
tion of the matrix representative of the Hamiltonian involves merely matrix 
multiplication of pairs of generator matrices. 

Gelfand has given a general formula (4) for the computation of the matrix elements 
of the generators, which although quite general, is somewhat unwieldy. Paldus 
[1-3] has observed that for atomic and molecular applications Gelfand's formula 
is unnecessarily general since the entries in the Gelfand tableaux can take only 
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values of 2, 1 or 0. Because of this Paldus has shown that one may contract the 
Gelfand tableaux in 3 x n tableaux .r'" ....... ]Ia  l 

mll  bt cl J 

which we shall refer to as Paldus tableaux. The entries in the Paldus tableaux are 
defined so that the numbers in the first column (a~) correspond to the number of 2's 
in the /'th row of the equivalent Gelfand taNeau, the numbers in the second 
column (b~) to the ones in the / ' th  row and the numbers in the third column (c~) 
to the o's in the / ' th  row. 

The simplified matrix element formulae now follow directly. I f  there is to be a 
matrix element between an elementary raising operator Eij (/'= i+  1) between two 
basis states I m) and Im'), (m]Eii[m') then I m ') must differ by one from [m) in the 
i'th row of the Gelfand tableau. For electrons this implies that 0 or a 1 on the i ' th 
row of  I m ') is replaced by a 1 or a 2 respectively on the i'th row of lm) (any other 
change in the i'th row of the Gelfand tableau leads to a tableau that violates the 
betweenness conditions [3]). The simplified matrix element formula of Paldus can 
be separated for each of the two possibilities. The first situation which Paldus calls 
the type A relation arises when a 1 on the i'th row of I m ' )  is replaced by a 2 on the 
row of [m). In terms of the Paldus tableau a~ of [m') is replaced by a~ + 1 in lm), 
and b~ of [m') is replaced by b~- 1 in [m). The simplified formula in this case is 

(m[EijIm')= 
bi+ 1 + 1)(b~_ 1 + 1)] (7a) 

The second possibility, type B arises when a 0 on the i'th row of Ira') is replaced 
by a 1 on the i'th row of Irn) and thus b i in I m ' )  is replaced by b~ + 1 in !rn) and 
c i in I m ' )  is replaced by c i - 1  in I m) in the corresponding Paldus tableau. The 
formula in this case is 

( ( b i + l ) ( b , + 2 )  "~1/2 
(mlEdm' )  = \(b~+ 1 + 1)(b~_ 1 + 1)J (7b) 

4. Matrix Element Formulae in Terms of Weyl Tableaux 

The possible conditions for matrix elements just discussed can now be reinter- 
preted in terms of Weyl tableaux. As we shall presently discuss this leads to further 
simplification. We need, however, a compact method for writing a general Weyl 
tableau for an N electron situation. Thus, for a Weyl tableau as shown in Fig. 1 
we define a line tableau 

I m > = l x t ,  x=, x3 . . . .  x~; Yl, Y2 . . . .  Y,) (8a) 

which consists of the numbers in the first column of  the Weyl tableau followed by 
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Fig. 1. A schematic representation of a Weyl tableau 

Xl Yl 

I m > = X 2 Y2 

the numbers in the second. Another different Weyl tableau may be distinguished 
by the line tableau 

x2, . .  ,Y2, . .  Y,) (8b) 

We can now distinguish the Paldus type A and B conditions using the Gelfand 
tableau/Weyl tableau relationship discussed in Sect. 2. The occurrence of the 
number i + 1 (= j )  in the Weyl tableau depends upon an increase in the entry in the 
f t h  row over the i'th row of the Gelfand tableau. It follows that an increase in the 
i'th row can only change the number j to the number i in exactly the same position 
in the Weyl tableau. Thus, in the type A situation, where a 1 in the i'th row of 
]m ') is replaced by a 2 in the i'th row of Ira>, the change in the Weyl tableau must 
be to changej  to i in the s a m e  p o s i t i o n  in the s e c o n d  c o l u m n .  This is so because the 
presence of a 2 above a 1 in a Gelfand column must introduce a number into the 
second column of the Weyl tableau. Thus in the notation of  Eq. (8) the conditions 
for the existence of a matrix element of the generator Ezj (j= i+  1) between basis 
vectors Ira) and tm') are 

t 
x k = x  k for a l lk  

Yk = Y s  for all k except where Yk = i and ys = j  for j =  i+  1 (ga) 

Similarly for the type B situation where a 0 in the i'th row of the Gelfand tableau 
Ira'> is replaced by a 1 in the i'th row of ]rn) the effect in the Weyl tableau is to 
changej (=  i+  1) to i at the same position in the first column. Again, in the notation 
of Eq. (8) the matrix element condition for type B is 

Yk = Ys for all k 

x k = xs for all k except where x k = i and xs = j  for j =  i+  1 (gb) 

The type A and B cases might equally well be called the column 2 and column 1 
cases when formulated in terms of Weyl tableaux. 

The conditions for the existence of a matrix element of an elementary generator 
E l i ,  j =  i+  1 between two basis vectors [rn) and lm') expressed as a line tableau 
may now be expressed very simply. All numbers in the two line tableaux Ira) and 
]rn')  must be the same except one which must have a j i n  Ira') replaced by iin Irn) 
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in exactly the same position. Having first identified a matrix element by this criteria 
it is a simple matter to identify it as A or B type by its position in the liffe tableau. 
It is not necessary in the present formulation to search for several pairs of basis 
vectors with a specific i - j  difference. Any pair I m) and [m ') related as in Eq. (9) 
will give rise to a matrix element of some elementary raising operator. Thus the 
elementary generator matrices need not be calculated in order. Indeed as we shall 
presently discuss, it is possible to evaluate the generator matrices as the basis 
vectors are generated. 

In order to evaluate the matrix elements of the elementary generators using the 
Weyl tableau we must reinterpret the b t of Eq. (7) in terms of the Weyl tableaux. 
The bz correspond to the numbers of l's on the / ' th  row of the Gelfand tableau. 
Now, using the relationship between Gelfand and Weyl tableaux, one can interpret 
bg as the number of '~ boxes (i.e. those for no Yk exists for a given xk) 
in the Weyl tableau when boxes containing numbers greater than l have been 
removed from the tableau. This number is readily computed from the line tableau 
by counting the number of entries xi up to and including x z and subtracting from 
this the number of entries y~ up to and including y~. Thus 

xi Yi 

where nx~ = 1 if xi~< l and 0 otherwise and similarly for ny. The three b I values 
necessary for matrix element computation can be rapidly calculated in succession 
using Eq. (10). 

The matrix elements of the weight generators E ,  are particularly easy to calculate 
in terms of Weyl tableau. The formula of Paldus is 

(mlE.[m ') = 3ram, [-2(ai-- ai_ 1 ) + ( b i -  bi_ 1 )-l (11) 

One sees immediately that a difference of 1 between a~ and a~_ 1 implies the presence 
of the number i twice in the corresponding Weyl tableau. Similarly, a difference of 
1 between b~ and b~_ 1 must imply the presence of the number i once in the Weyl 
tableau. Thus, the value of the matrix element is merely the number of times the 
entry i occurs in the Weyl tableau 

(rnlEiilrn ')  = 6mm, (n x~ + ny~ ) (1 2) 

where nx~ = 1 if x i = i and 0 otherwise and similarly for ny. 

5. Basis Vector Generation in Total Weight Form 

The starting point in the Weyl and Gelfand branching methods is the highest 
weight tableau. In terms of Gelfand tableaux the highest weight tableau is the one 
for which the numbers in the columns of the Gelfand tableau do not increase when 
reading from bottom to top (i.e. rn~i = m~, for all i for a given column a). Accord- 
ingly the Weyl tableau corresponding to this situation consists simply of a first 
row contains l's, a second row contains 2's etc. This remains true regardless of the 
orbital space in which the representation exists. In terms of the Weyl line tableau 



Representation Matrices of  the Generators of the Unitary Group 135 

(8) the highest weight will consist of a single row of numbers x i increasing mono- 
tonically in unit steps until the length of the first column is reached and similarly 
for the second column. For example 

Im)hw=I1, 2, 3 , . . . ,  t; 1, 2, 3 , . . . ,  u) (13) 

It is now convenient to define the total weight T o f a  Weyl tableau as the sum of the 
numbers in the tableau: 

t u 

T= Z x , +  ZYi.  (14) 
i i 

There will in general, be several tableaux having the same total weight but there will 
only be one having the total weight T 1 of the highest weight tableau 1 in the 
Gelfand scheme. Since this unique tableau is easily found it is the natural starting 
point from which to derive all other tableaux. We can systematically find all the 
tableaux of next highest total weight T 2 by increasing each of the numbers in the 
Weyl tableau by 1 and testing for the Weyl standardness condition (i.e. the num- 
bers in any row or column must not decrease and the same number cannot occur 
twice in a column). 

In this way one can find several tableaux of the form 

Ix 1 ,  x 2 , .  . . ,  x , +  l , .  . . ,  x t ;  y l ,  y 2 , .  �9 ", Y u )  

from the highest weight tableau. However, one immediately observes the relation 
between this tableau and the one from which it was generated 

Ix1, x2, . . . ,  x . . . . . .  x t ;y l ,Y2 , - - - ,Y~)  

corresponds exactly to the condition (9b) for a matrix element of the elementary 
generator Exr, xr+ 1 o Thus if we generate the basis tableau of the total weight 
Tp+ 1 from those of the weight T r in the manner just suggested we have the possi- 
bility of simultaneously calculating the value of  the matrix elements of the gen- 
erators. 

Since we are concerned only with the elementary raising generators we can be sure 
that the above mentioned scheme will generate all possibilities. A Weyl tableau 
I. - .J- - �9 ) of total weight Tr+ 1 is obviously related by the elementary generator Eij 
to a Weyl tableau I- ". i . . .  ) of total weight Tp for j =  i+  1. Further, the basis vectors 
of total weight Tp+ 2 can only be related by the elementary raising operator to those 
of Tp+ 1 and so on. From a practical point of view this scheme will be highly 
efficient since once the vectors of weight Tp+ ~ have been found and the possible 
matrix elements with the vectors of weight Tp have been computed, the vectors for 
Tp can be discarded before generating those of weight Tp+ 2. Because the number 
of basis vectors of  a given total weight Tp increases much more slowly than the 

1 To avoid confusion it should be pointed out that the notion of  weight within the Gelfand scheme refers 
to the eigenvalues of  the E~i generators. Thus the total weight T, of  the highest weight Gelfand state is 
actually the lowest total weight of  T,, of  all the possible Gelfand states. 
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dimension of the irreducible representations in U(n) the scheme is computationally 
attractive in the case where the number of electrons is small and the orbital basis 
(n) is large and thus no possibility of holding all the basis vectors in high speed 
computer memory. 

There is, however, a small complication in the above scheme when deriving the 
basis vector of a total weight Tp+ 1 from those of total weight Tp when there are 
several vectors of weight Tp (as is generally the case). For example a basis vector 
with the same T 3 total weight could be produced from two different T 2 basis 
vectors by the two routes 

Ixx . .  .xr+ l . .  .x s. . .xt; y l  �9  Ixl - �9 . x , + l . . . x + + l . . . x , ; y  1 . . . y , )  
(15) 

[X 1 . . .  X r . . . X s ~ -  1.. .xt ;Y 1 . . . y , )  --> [x 1 . . . x r +  1 . . . x , +  1. . .xt;Y 1 . . . y , )  
(16) 

Thus a given basis vector in T 3 obtained from one in T 2 may have already been 
obtained from a different T 2 basis function so it must be checked against the current 
list of T 3 basis vectors before being added to the list. However, even though both 
the basis vectors generated under the above conditions do not lead to distinct 
states, they do give distinct matrix elements, the first in E . . . . .  + 1 the second in 
Ex .. . .  + 1. Consequently, we automatically obtain all non-zero elementary genera- 
tor matrix elements as we generate basis vectors by total weight. 

Raising generators other than the elementary generators are obtained by matrix 
multiplication through the use of Eq. (5b). Here, again we obtain considerable 
simplification if the basis vectors have been generated by total weight Tp. For 
example, the first Ep~ of Eq. (5b) to be found would be Ev, v + 2 and these generators 
would only have matrix elements between basis vectors with weights T v and Tp+ 2. 
In other words the vast majority of matrix elements will be zero in principle and 
only those related via total weights as above need to be considered. A similar 
situation is encountered (but less obviously) when the product matrices EvqEr~ 
are computed. (These products are required for the computation of the matrix 
representative of the Hamiltonian which is bilinear in the generators.) For example, 
if Epq is the raising operator Ep, p+ 2 and E,~ is the raising operator E~,r+ 3 , then 
there are only matrix elements of the product between basis states of weights Tp 
and Tp+ 5. 

6. An Example : The Irreducible Representation [2, 1, 1, 0] in U(4) 

The above ideas are perhaps best illustrated with a non-trivial but simple example : 
the representation [2, 1, 1, 0] in U(4). 

The first step is the calculation of the range of total weights. The Weyl tableau 
corresponding to the highest weight Gelfand tableau [2, 1, 1, 0] has the form 
1123; 1) in the notation of Eq. (8) and its total weight is T 7. The lowest weight 
Gelfand tableau gives the Weyl tableau 1234; 4) and corresponds to total weight 
7"13. The basis vectors of total weight T s are obtained as 
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t1123; 1> 3--+4 21124; i> (17) 

11123; I> I ~ 2  31123; 2> (18) 

Basis vector 2 is thus obtained from 1 by increasing 3 to 4. Consequently the E34 
generator has a (1, 2) matrix element given by Eqs. (7b) and (10). Only basis vector 
2 is needed to compute the matrix element once the fact that the matrix element is 
of  type B is observed. Since i =  3 the bt values needed are b 2 , b 3 and b 4 which have 
values 1, 1 and 2 respectively. The (1, 2) matrix element of  E34 is thus 1. Similarly, 
basis vector 3 gives rise to a (1, 3) matrix element of the E12 generator which is of  
A type (Eq. (7a)). The b z required are bo, b 1 and b 2 which have values 0, 1 and 1 
respectively giving a final matrix element of  1. Note that all other possible in- 
creases violate the standardness conditions for Weyl tableaux. 

The full set of basis vectors for the problem is illustrated in Fig. 2 and the matrix 
elements for the elementary raising operators are collected in Fig. 3. There are 22 

T7 T8 T9 TIo T11 T12 T13 
11123jl > F3z, 21124j> E23 41134 j > El2 71134j2 > E12 10123z;~2> E23 13123/,j3> E34 15123L#, > 

\ \ / \  / / 
El2 E12 E23 E23 E12 E12 

E3 E23 8 E23 E3a 14 3~2> [124~2 > 112&j3 > - -  113&~3 > 1134;4> 

\ /\ / 
E23 E34 E34 E23 

1123 3 1123 4 > 3 1124 4 > 

Fig. 2. Basis vectors for representation [2,1,1,0] of U(4) in total weight order 

m m 2 m 3 
mt 

m2 
m3 

m4 

m5 
m6 

m7 
m8 
m9 
rnl 0 
n311 
m12 

m13 
rTI14 

m15 

m~ m5 m6 m7 m8 m9 mm m~ rn12 

1(23} 1(12) 
I(3Z,) i(23} 

1/dL,[12} 

0.'707 (23] 1.22/,I 23) 
0.816(3~1 1.154(3 z~ 

1./,1&(12) [1707(23) 

1.22&(23]0.81b~3z 

1.15d :~ 

m15 

1(23) 
1(12) 1(12) 

1(23) 

i(34) 
1(12] 

Fig. 3. Matrix elements of the elementary generators of U(4) for representation [2,1,1,01 
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"tie" lines in Fig. 2 connecting basis functions having integer difference between 
standard tableaux. The "tie" lines represent the possible ways of generating functions 
of total weight Tp+ 1 from those of weight Tp. There are thus 22 non-zero matrix 
elements of the elementary raising generators E12 E23 and E34 and these are 
collected in Fig. 3. The entries are denoted (Z~E'J))m~,,,, where Z is the numerical 
value of the mk, mt element of generator Eij. Note that because of the matrix 
element relationships between two tableaux the matrix elements of the different 
basis generators can never occur in the same position. 

Finally, the matrix elements of the weight generators E u are readily found from 
Eq. (12). Thus 

(123' 1]Eii]123"l)={~ f o r i = l  
' ' for i=  2 or 3. 

7. Comparison with the "Harmonic Excitation Diagram" and A ac Tableau Methods 
of Paldus 

After this work was complete the authors became aware of more recent work of 
Paldus [8] in which the generation of basis functions by total weight is described 
by "harmonic excitation diagrams". In Paldus' work the information shown in 
Fig. 2 is presented in the form of a two-rooted graph 2 where the roots are the 
minimal and maximal states. The Tp-level states are represented by the Tp-level 
verticies and the diagram is obtained with only first level edges (representing the 
elementary generator matrices elements). As Paldus [8] points out the verticies 
may be labelled arbitrarily so that this method is identical to the scheme described 
in Sect. 5. Also we should add that a similar scheme has been discussed by Harter 
and Patterson [9]. 

From the point of view of computational implementation of Unitary Group 
methods it should be pointed out that the methods discussed in Paldus' [1] original 
paper are not really suitable as actual computational algorithms, but rather serve 
to illustrate the structure of the general theory. In more recent work [2, 3, 8, 10], 
Paldus has developed a representation of the Gelfand states by Aac tableaux (the 
first difference tableau of the "a"  and "c" columns of the tableau in Eq. (6).) This 
representation is particularly suitable for computation since each state is rep- 
resented by two binary strings of  length n. In this representation the matrix element 
formulae are simplified (c.f. Eqs. (21) and (22) of Ref. [10]) and the relationship 
between the Weyl tableaux and Gelfand tableaux becomes straightforward. In 
particular we should point out that formula (10) in this work is easily related to 
formula (29) in Ref. [9] using the Aac tableau method. 

The methods discussed in this work are easily implemented in terms of the Aac 
tableaux and the example presented in Fig. 2 is given again in terms of the Aac 

2 It should be noted that the two-rooted graph shown in Fig. 2 is different than the one discussed briefly 
by Paldus [3] or in the recent elegant graphical analysis by Shavitt [14]. 
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tableau in Fig. 4. In this representation, it can be seen that the action of an ele- 
mentary generator merely exchange an adjacent "1" and "0" in one of the columns 
where the row labels correspond to the subscripts of the generator (note that the 
rows are numbered from the bottom of the tableau). The total weights are easily 
identified by taking the binary ones complement of the second column whence the 
number of l's in a row of the resultant tableau gives the occupation number of the 
corresponding orbital. 

8. Discussion 

Although Paldus [3] has developed a method for the direct calculation of the non- 
elementary generators of U(N), the direct method will probably be less efficient 
than one based on Eq. (5b) in most circumstances (see the discussion in Ref. [8]). 
It is in the evaluation of the products of generators occurring in Eq. (5b) and in the 
evaluation of the bilinear terms in the Hamiltonian that the total weight order of 
the basis functions becomes preferred over the canonical Gelfand order. The 
non-elementary generators take on a simple block structure by total weight (e.g. 
Ev, p+q has matrix elements only between basis vectors whose total weight differs 
by q). Thus one has "selection rules" that enable the efficient evaluation of the 
bilinear part of the Hamiltonian. 

With a view to applications in atomic physics, when we are concerned with 
U(2I+ 1) for shell of quantum number l, it is clear that the total weight Tp is 
related to the azimuthal quantum number M z by the addition of a constant. Thus 
applications involving electronic angular momentum require basis vectors in the 
order in which we derive them [5, 6, 9, 11]. For example, the L 2 operator 

( G -  L+ L_ --L_L+ ) 

has non-zero matrix elements only between basis vectors of the same total weight. 
(This follows directly from the fact that L+ and L_ are linear combinations of 
elementary raising and lowering generators). 

In application of the unitary group approach to CI calculations one will often be 
forced to truncate the basis at say quadruple replacements with respect to some 
dominant configuration. In the present method, basis vectors can be rejected 
according to the truncated requirement 3 at the point of generation and thus one 
has the advantage that basis vectors of higher total weight which would have to be 
rejected in the Gelfand canonical basis are in fact never created. In addition as 
discussed by Paldus [8] the present type of scheme may also prove to be useful in 
the so called "direct" CI method (see Ref. [12] for example). 

Clearly, it would be desirable to have an algorithm for obtaining the elementary 
generators without explicitly generating the basis. Paldus [13] has in fact derived 
such a method using a graphical representation of the Aac tableaux. Since, in most 

3 In the evaluation of the bilinear part of the Hamiltonian, one must keep intermediate states one 
excitation level higher than one's ultimate truncation requirement. 
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Fig. 4. Basis vectors for representation [2,1,1,0] of U(4) in total weight order in the Aac tableau 
representation 

applications one will want to truncate the CI expansion one will probably wish to 
generate the basis vectors explicitly. In this case, basis generation by total weight 
is to be preferred since one need only keep basis vectors of weight T v and Tv+ ~ at 
any stage in the computation. 

In the actual computation of the matrix elements of the elementary generators for 
two sets of basis vectors of weight T v and Tp+ 1 there are two problems which 
govern the efficiency of the method. Firstly, in generating a vector of weight 
Tp+ 1 from one of weight Tp one must search for the standardness conditions of the 
Weyl tableau. While this requires only a few logical operations, it is clear that the 
Aac tableau would have advantages at this point. Secondly, one has the problem of 
searching the list of basis vectors of weight Tp+ 1 for duplicate entries as each basis 
vector is generated. However, this search is facilitated if the basis vectors are 
generated by allowing all the elementary generators to operate, in succession, on 
the first column of a Weyl tableau of weight Tp and then allowing all the generators 
to operate on the second column. The basis vectors of each weight will then be 
generated in "page order" if the line tableau is read from left to right. Thus the 
appearance of a basis vector that has been generated previously is easily recognizable 
as being out of sequence and one has only to search the list backwards to pick 
up the correct sequence number of this duplicate vector. The corresponding Aac 

tableaux are also obtained in page order if the Aax and Ac columns are written 
consecutively and read from left to right as a binary integer. This is the method used 
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